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Invasion percolation with trapping(IPT) and diffusion-limited aggregation(DLA ) are simple fractal models,
which are known to describe two-phase flow in porous media at well defined, but unphysical limits of the fluid
properties and flow conditions. A decade ago, Fernandez, Rangel, and Rivero predicted a crossover from IPT
(capillary fingering) to DLA (viscous fingering) for the injection of a zero-viscosity fluid as the injection
velocity was increased from zero.[J. F. Fernandez, R. Rangel, and J. Rivero, Phys. Rev. Lett.67, 2958(1991)].
We have performed experiments in which air is injected into a glass micromodel to displace water. These
experiments clearly demonstrate this crossover as the injection velocity of the air is increased. Furthermore,
simulations, using our standard pore-level model, also support the predicted IPT-to-DLA crossover, as well as
the predicted power-law behavior of the characteristic crossover length.
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I. INTRODUCTION

The fingering of the injected fluid associated with immis-
cible, two-phase flow in porous media is one of the major
reasons for the inefficiency of several important geologic
recovery/remediation processes. In secondary oil recovery,
water displaces much less than half of the oil in any given
formation, because the water “fingers” into the oil-saturated
reservoir. In CO2 sequestration(a means to mitigate global
warming), where carbon dioxide is injected into brine-
saturated porous media(e.g., subsea floor formations, deep
saline aquifers) for long-term storage, fingering limits the
available storage capacity so that only a small fraction of the
reservoir is occupied by CO2. In remediation of DNAPL
spills, which can enter and contaminate the ground water,
standard pump and treat remediation methods are often inef-
fective because water flushing in porous media typically mo-
bilizes only a small portion of the pollutant; a better under-
standing of the location of the DNAPL within the water table
can improve this process. Our focus in all of these processes
is on the efficiency of displacement, so it is important to
understand how the injected fluid occupies the medium.
Therefore, this study focuses on the saturation of a nonwet-
ting fluid injected into porous media—its fingering, and its
fractal character.

Two simple models of two-phase flow in porous media
have been used to describe the flow in two limits which are
conceptually important but seemingly unphysical: Invasion
percolation with trapping(IPT) describes the flow when cap-
illary forces are dominant(zero injection velocity), and dif-
fusion limited aggregation(DLA ) describes the flow when
the injected fluid has zero viscosity and capillary forces are
absent. Capillary number, a measure of the the strength of
the viscous forces relative to the capillary forces, is defined
as

Nc =
mdv

s cosu
, s1d

where md, is the viscosity of the defending fluid,v is the
injection velocity,s is the interfacial tension, andu is the
contact angle. In a seminal 1991 paper, Fernandez and co-
workers used a DLA model modified to include capillary
forces to demonstrate that injection of a zero-viscosity fluid
would exhibit capillary fingering(IPT behavior) for small
capillary number(viscous forces! capillary forces) and that
the behavior would cross over to viscous fingering(DLA-
like) as viscous forces became more important[1,2]. Further-
more, they predicted(and verified for their model) the de-
pendence of the crossover length upon the relative strength
of the capillary forces

L ~ sNcd−2/s2+Dsd = sNcd−0.6, s2d

whereDs is the fractal dimension of the IPT external perim-
eter, i.e.,Ds=1.33 [3,4].

In this paper, we will test their predictions using results
both from our flow cell experiments and from our standard
pore-level model, which is more general than their modified
DLA model [5]. The agreement of our experimental results
with the predictions for the IPT-to-DLA crossover indicate
that these results, which are only strictly valid at unphysical
limits, i.e., M =0, do affect real physical behavior.

First, let us briefly review the limiting behaviors. In the
first limit, zero capillary number, where capillary forces are
much larger than viscous forces, Wilkinson and others intro-
duced a simple model of immiscible, two-phase flow called
invasion percolation[6,7]. In this model, the nonwetting, in-
jected fluid advances solely through the largest throat(the
one with the smallest capillary pressure) on the interface be-
tween the two fluids during each time step. Since, at small
flow velocities and related pressures drops, the wetting fluid
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cannot displace the nonwetting fluid, a fully encircled region
of wetting fluid is immobilized or trapped, in that the non-
wetting fluid is prevented from advancing into this trapped
region[8]. Invasion percolation with trapping(IPT) modifies
the standard IP rules to forbid advance into a “trapped” re-
gion [4,8–10]. This simple model is applicable far from an
injection well, where the invasion front is becoming longer
and longer so that on the interface, the local flow velocity
and, therefore, the viscous forces are small. This invasion
percolation model has been widely studied since its introduc-
tion [6,7,10–16]. There have also been many applications of
this model and closely related models to a variety of increas-
ingly more complex porous media flow problems[17–20];
Blunt has provided an excellent review of recent work[21].
The injection patterns have been shown to be self-similar
fractals with a value of fractal dimension close to that of the
standard percolation model. Recent work on large, two-
dimensional systems favors a value of fractal dimension be-
low that of ordinary critical percolation theory,Df
< 1.825±0.004, with uncertainties that exclude the ordinary
critical percolation theory value,Df <1.89 [3,4,10,11]. Rel-
evant to our modeling on small systems, other studies, on
small systems, indicate thatDf <1.89 is a better fit to the
observed results for these system sizes[16,22–24].

In the other limit of zero capillary forces and zero-
viscosity ratio,

M = mI/md = 0 s3d

(i.e., ratio of the viscosity of the injected fluid to that of the
displaced fluid), the flow is described by diffusion-limited
aggregation(DLA ) [9,10,12,13,25–32]. Evidence from both
experiments and modeling showed that not only were the
DLA and viscous fingering patterns visually similar, but they
also had the same fractal dimension[12,13,25–36]. We ex-
pect that DLA patterns on our lattices should have a fractal
dimension,Df <1.71. For central-injection DLA on a square
lattice, the clusters grown were observed to be self-similar
fractals with a fractal dimensionDf <1.71 when the clusters
occupied fewer than approximatelym<104 lattice sites.
However, as the size of the cluster increased to more than
m<106 lattice sites, the pattern ceased being self-similar,
first becoming diamond shaped and then cross shaped with
four distinct arms in the lattice directions[37]. For “off lat-
tice” DLA mimicking real porous media that lack the sym-
metry axes of a lattice, the patterns are more self-similar with
a fractal dimensionDf <1.70 [38]. Since the DLA simula-
tions on relatively small lattices produce fractal patterns
(with approximately 104 sites) very similar to very large,
off-lattice DLA patterns, we expect that our flow patterns on
small diamond-lattice porous media will produce fractal pat-
terns similar to the flow in realistically large, random porous
media.

In Sec. II of this paper, we will present our experimental
flow cell results. In these experiments, we have injected air
into in a glass micromodel saturated with water[39]. Flow
patterns from these experiments show that for this small(but
nonzero) viscosity ratio,M =1/62.5, small capillary number
flows (small injection velocities) exhibit capillary fingering,
while large capillary number(large injection velocities)

flows exhibit viscous fingering. Furthermore, at moderate
capillary numbers, the early time flows exhibit capillary fin-
gering; then, as the flow patterns develop, the flows change
and eventually exhibit viscous fingering.

In Sec. III of this paper, we present modeling results
which further support these predictions and which demon-
strate their relevance to real two-dimensional flows. Instead
of using a DLA-based algorithm modified to account for
capillary pressures, we used our standard pore-level model
for a range of capillary numbers, and viscosity ratioM
=10−4. This pore level model has been quantitatively vali-
dated in the limit of small capillary numbers and small vis-
cosity ratios[5]. Not only do our modeling results exhibit the
predicted IPT-to-DLA crossover, but they also support the
predicted scaling of the crossover.

Both the experimental and modeling results show the
crossover from capillary fingering(IPT-like) to viscous fin-
gering (DLA-like ) in a physical range of capillary numbers
and viscosity ratios for these systems with a few thousand
pore bodies(i.e., lattice sites).

II. EXPERIMENTAL FLOW CELL RESULTS

A. Experimental setup

The experimental flow cell is composed of two sheets of
glass that have been fused together; one has a random,
pseudo-two-dimensional matrix sandblasted into it, the other
is flat; together, they form a network of randomly-sized flow
channels(Fig. 1). The cell is saturated with water, and then
connected to a syringe pump by 0.08 inch inner diameter
nylon tubing, which controls the constant flow rate of the
injected air. The process is recorded using image capture
with a video camera in NTSC formats6403480d, model no.
4915-4000/0000 and a Nikon Nikkor 20mm lens. The pres-
sure applied across the cell is measured each time a picture is
taken. Experiments were run over a range of flow rates. The
experimental setup is shown in Fig. 2.

The flow cell, shown in Fig. 2, has an average channel
width of 0.41 mm, and an average channel depth of
0.067 mm. The channel width distribution, shown in Fig. 3,
is approximately uniform.

FIG. 1. Horizontal flow cell. Air is injected slowly through the
inlet at the right side into a reservoir. Once the reservoir is filled, air
is injected from the air-filled reservoir into the flow cell. The dis-
placed water flows into the reservoir on the right side and then
through the outlet.

FERERet al. PHYSICAL REVIEW E 70, 016303(2004)

016303-2



Experiments were conducted by injecting air at a constant
flow rate, which is controlled by the KDS 200 syringe pump.
The pressure is read using a Setra C239 pressure transducer,
which has a range of 0 to 30 inch water column and an
output of 4–20 mA with an accuracy of ±0.14 % of the full-
scale range. The pressure is recorded by a computer using a
Cyber Research CYRDAS 1602 A/D Card, which is a 12 bit
A/D having a full-scale range of 0–10 V.

The images recorded by the camera were gray-scale im-
ages, which were digitally converted to black and white in
order to determine the saturation of air, the average position
of the air and the fractal dimension of the invading fluid.
This image conversion was performed by choosing a gray-
scale threshold above which all pixels were converted to
white (air), and below which all pixels were converted to
black (water and glass). The threshold was chosen by visual
inspection to optimize the accuracy of the air and water oc-
cupation of the cell in the final black and white image.

Consistent lighting irregularities, such as glare, will cause
errors in the above “thresholding” process. In an attempt to
remove this error, an image of the flow cell prior to the air
injection was also converted to a black and white image; this
basis image was then subtracted from the subsequent images.
However, since lighting irregularities varied during the
course of an experiment, the associated error was somewhat
different for each picture, so that not all of the “error” could
be removed by merely subtracting the basis image. A number

of small, slightly-below-threshold regions that were clearly
not part of the injected air were not removed by the subtrac-
tion of the basis image. An algorithm was created to system-
atically remove these erroneous regions: a small box was
inscribed around each white pixel; if no white pixels were
found on the perimeter of this box, which was between 6 and
10 pixels wide, then the pixel was separated from the in-
jected air and considered to be in one of the erroneous re-
gions. Visual comparisons were used to verify this additional
subtraction process. Once the gray-scale images were digi-
tally converted to black and white images, the saturation of
air, the average position of the air, and the fractal dimension
were calculated.

B. Experimental results

Figure 4 shows the flow pattern at a very small injection
rate,q=0.002 ml/min which corresponds to a capillary num-
ber of Nc=8310−9. At this small capillary number, a capil-
lary fingering pattern is expected; and, indeed, the pattern is
characteristic of capillary fingering. The avalanche structure
and the trapping, both characteristic of capillary fingering,
are clearly evident. The lightest gray scale represents a time
interval that would include a number of avalanches of in-
jected air near the inlet. The black scale represents the final
avalanche going to breakthrough. The darkest gray scale pri-
marily represents one avalanche near the middle of the pat-

FIG. 2. Experimental setup.

FIG. 3. Number distribution of channels in the flow cell.

FIG. 4. Digitally converted photographs of the experiment
where air was injected into the water saturated flow cell, shown in
Fig. 1. For this flow, the capillary number isNc=8310−9. The
different shades of gray represent different time intervals, from the
lightest gray(earliest times) near the inlet at the far right center of
the pattern to black(latest times) near breakthrough at the lower
left-hand side. At a number of locations, some of the darker gray
(later time flows) shows at the edges of lighter gray regions; most,
if not all, of this is due to difficulties in the digital conversion and
then overlapping the different photographic images taken at differ-
ent times.
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tern. It should be noted that almost all the regions that are
trapped during the time interval represented by one gray
scale are not invaded by later(i.e., darker gray) flows. There
are a very few(approximately four) regions which appear to
be trapped during the times represented by the next-to-the-
lightest gray scale but which are invaded during the next
time (next darker gray scale) interval. This may occur be-
cause there could be a path out of the apparently trapped
region, which was masked during the process of converting
the photographic image to black and white; it also may rep-
resent a deviation from IPT because IPT is only exact at zero
capillary number.

Figure 5 shows one of these time-resolved gray-scale pat-
terns for a capillary number that is three orders of magnitude
larger,Nc=2310−5, than the flow in Fig. 4. Clearly, there are
significant qualitative differences between the flow patterns
in Figs. 4 and 5. Although Fig. 4 exhibits characteristic cap-
illary fingering, Fig. 5 exhibits viscous fingering, especially
at the later times. Although there are a number of trapped
regions, most prevalent at earlier times, there is little evi-
dence of the avalanche structure where the flow initiates
from a seed and then “bursts” into a region which is nearly as
wide as it is long. On the other hand, all viscous fingers
across a pattern tend to grow towards the outlet with the
longer fingers growing the most. That is clearly present in
Fig. 5 where in the last time interval(black region) a number
of fingers all across the pattern are growing towards the out-
let, with the longest finger growing the most. It seems appar-
ent that during the earliest times, there is definite evidence of

trapping and some evidence of avalanche structure; but this
invasion percolation with trapping behavior has disappeared
at the latest times, which are entirely consistent with viscous
fingering.

In addition to presenting these figures, we have analyzed
the photographs for a range of capillary numbers to deter-
mine fractal dimensions of the near-breakthrough patterns by
box counting; also we have analyzed the photographs at con-
secutives times to determine the volume of air injected as a
function of time,Vstd, and the average position of the in-
jected air(as determined from the area in the photographs),
kxlt. The box counting determines an average fractal dimen-
sion of the near-breakthrough patterns. The values of fractal
dimension determined in this way are approximately correct,
Df <1.7±0.2; unfortunately, for these small systems, the ac-
curacy is not sufficient to distinguish between IPT and DLA.

However, plotting volume of air injected,V, vs average
position of injected air,kxl, does provide convincing evi-
dence of the crossover from these experiments as it does with
the modeling results in Fig. 8. The plot ofV vs kxl as deter-
mined from the experiments is shown in Fig. 6. The early-
time dependence of the smallest capillary number data is
well fit by

V = AkxlDf−1, s4d

using the correct IPT fractal dimension,Df =1.82, where the
value ofA from the fit isA=17.47; this curve is given by the
gray line in the figure. As was observed with the modeling
results, the early-time(small-size) data follows the IPT be-
havior and then breaks away at characteristic size(or time),

FIG. 5. Digitally converted photographs of the experiment
where air was injected into the water saturated flow cell. For this
flow, the capillary number isNc=2310−5, so that the flow velocity
is two thousand times larger than that in Fig. 4. Again, the different
shades of gray represent different time intervals, from the lightest
gray near the inlet at the far right center of the pattern to black near
breakthrough at the upper left-hand side. As with Fig. 4, because of
difficulties with reaching the threshold, some of the darker gray
(later time flows) shows at the edges of lighter gray regions.

FIG. 6. Volume of air injected into the flow cell as a function of
the average position of injected air, as determined from the photo-
graphs at a series of times, for a range of capillary numbers(Nc

=2310−8, D; Nc=8310−8, l; Nc=4310−7, c ; Nc=2310−6, N;
Nc=4310−6 .; andNc=1.6310−5, P). The solid gray line shows
the IPT behavior as determined from a fit to the early timeNc=2
310−8 data, using the correct fractal dimension for IPT,Df =1.82.
The solid black line mimics the curvature of the DLA dependence
with the DLA fractal dimension,Df =1.714.
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which decreases with increasing capillary number. Unfortu-
nately, the limitations of our photographic equipment se-
verely limited the number of data points at the higher capil-
lary numbers. However, the experiments clearly show the
crossover from capillary fingering to viscous fingering at a
characteristic size, which varies inversely with capillary
number.

III. PORE LEVEL MODELING RESULTS

We have developed a pore-level model that includes both
capillary and viscous forces in a two-dimensional model
where pore bodies of volume,3 are located at the sites of a
diamond lattice and are connected by throats of length, and
randomly chosen cross-sectional area varying uniformly
from 0 to ,2. The capillary number and viscosity ratio are
determined from input values of the viscosities, surface ten-
sion, and net injection velocity. This model has been quanti-
tatively validated in the limits of zero injection velocity(the
IPWt limit) and in the limit of zero viscosity ratio and zero
capillary forces(the DLA limit)[5]. Although this pore-level
model is very comparable to other pore-level models in the
literature [28,29,40–46], it is somewhat more flexible be-
cause both the pore throats and pore bodies have finite vol-
ume. Details of our model were described in earlier papers
[5,47]; in the latter paper, we found a crossover from capil-
lary fingering(IPT-like) to compact or Euclidean behavior as
capillary number was increased for two fluids of equal vis-
cosity, (viscosity ratio,M =1) so that capillary forces domi-
nated the fingering.

Qualitatively, this is similar to the crossover from IPT-like
flows to DLA-like flows discovered by Fernandezet al.; for
zero viscosity ratio and finite capillary number, their smaller
flows exhibit capillary fingering(IPT-like) but then the larger
flows (at later times) exhibit viscous fingering(DLA-like )
[1,2]. We have used our standard pore-level model to study
two-phase flows for small viscosity ratiosM =10−4d and a
range of capillary numbers. Because this model is more gen-
eral than the Fernandez model which explicitly builds in the
DLA, we are restricted to smaller systems sizes than those
studied by Fernandezet al.By being more general, this pore-
level model does not restrict the physical options in the post-
crossover flow; that is, our model will enable us to study the
effect of larger viscosity ratios.

As shown in Figs. 7(a) and 7(b), we inject the low viscos-
ity immiscible fluid along one side(the bottom of widthW)
of our rectangular porous medium of lengthL=30 pore bod-

ies and widthW=180 pore bodies. To improve statistics and
avoid problems encountered with finger coarsening in long-
narrow systems, we studied the flows in short-wide systems
sW.Ld [24,48]. As with the experimental results in Figs. 4
and 5, these figures show the change from characteristic cap-
illary fingering at the smaller capillary number to viscous
fingering at the larger capillary number. Both cases shown in
Fig. 7 are for the same realization of the porous medium, so
that one can track specific changes as capillary number is
increased.

At each time step, we determine the amount of injected
fluid, m (proportional to the volumeV), and the average po-
sition of this injected mass of fluid,kxl, in the mean flow
direction. For fractal patterns of injected fluid, the amount of
injected fluid scales as a fractal power of the size of the
pattern. For these systems, fractal scaling predicts that

m= AWkxlDf−1, s5d

whereA is a constant sometimes called the lacunarity[10].
Available computer resources and the complexity of our code
limit us to much smaller systems,L3W=503150=7500
pore bodies, than those studied by Fernandez in his less gen-
eral, but computationally simpler model. For our small sys-
tems, direct plots ofm vs kxl seem to provide more robust
estimates of fractal dimension than do box-counting methods
[24]. Figure 8 shows a plot ofm/ sWkxl0.89d, which should be
a straight line for capillary fingering, but which should de-
crease for viscous fingering likeA8kxl−0.176, where the power
is the difference between the DLA and IPT fractal dimen-
sions[49]. The results for the smallest capillary number track
the horizontal line and then break away at a moderately large
size. Increasing the capillary number causes a decrease in the
characteristic size at which the data break away from the
horizontal IPT behavior towards the decreasing DLA-like

FIG. 7. For one particular realization, these figures show the
pre-breakthrough patterns of injected fluid for the capillary num-
bers:(a) Nc=0.0001;(b) Nc=0.004.

FIG. 8. Fractal character of the modeling results for mass,m, as
a function of average position,kxl, for a variety of capillary num-
bers Nc=0.00025 ssd, Nc=0.0005 s,d, Nc=0.001 s�d, and Nc

=0.002sld. Length scales are in units of the lattice spacing. Dis-
tances are measured in units of, /Î2; masses(equivalently vol-
umes) are measured in units of,3.
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behavior. Fernandezet al. predicted that this characteristic
size should have the form given in Eq.(2) [1]. Therefore, the
mass of injected fluid should scale as

m= Wkxl0.89Iskxl/Lcd, s6d

whereIsud is an unknown function of the average size in
units of the characteristic length

Lc = 0.033Nc
−0.6. s7d

The constant 0.033 was chosen so that the crossover would
occur for kxl<Lc.

The fractal scaling of the mass of injected fluid in terms
of the scaled size is shown in Fig. 9. If the predictions of

Eqs.(6) and(7) are valid, the data in Fig. 8 form/ sWkxl0.89d
should collapse to one curveIsud when plotted vs the scaled
lengthu=x/Lc. Figure 9 shows that this characteristic length
does indeed collapse the data to one universal curve. It
should be emphasized that this collapse is the result of the
predicted power law behavior of Eq.(7); the constant 0.033
has no effect upon the collapse and only serves to shift the
crossover tou.1.

IV. CONCLUSIONS

Our flow cell experiments clearly demonstrate the cross-
over from capillary fingering to viscous fingering as the cap-
illary number is increased. The flow patterns Figs. 4 and 5
show the characteristic flows associated with capillary fin-
gering and viscous fingering, respectively. More directly in
Fig. 6, the volume of the injected air initially scales with its
average position as predicted by IPT, but then crosses over to
DLA-like behavior at a characteristic length which decreases
as capillary number increases.

In agreement with experiment, simulations, using our
standard pore-level model, also support the predicted IPT-to-
DLA crossover; i.e., these simulations show the same cross-
over from IPT behavior for small sizes to DLA behavior for
larger sizes at a characteristic length which decreases with
increasing capillary number. Furthermore, the predicted
power-law behavior for the characteristic length, Eq.(2),
does collapse the simulation data to a single curve, which
indicates that this scaling length correctly represents the cap-
illary number dependence of the crossover.
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